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1. Introduction

Logic, including multiple-valued logic, has been the subject
of extensive research for decades. Starting with the early
works of Boole [1], [2], “classical" logics like propositional
logic or predicate logic are two-valued logics and thus
primarily valuable to represent precise knowledge, while the
aim of many-valued logic (MVL), including infinite-valued
logic, is to provide formal representation languages which can
be used to represent precise as well as imprecise knowledge.
[8] tried to produce a syntax for the logic of vague concepts,
inspired by Lukasiewicz logic and based on MVL. In [12]
Hurst gives a good overview of the historical development of
MVL, including circuit realizations, while [11] gives an
overview of many of the theoretical works on MVL, including
a classification of the different approaches. Possibilistic logic
[7] focuses on expressing uncertain knowledge in terms of
possibility-qualified statements. It treats syntactic objects,
expressing inequalities resulting from statements.

Fuzzy Set Theory [24] and especially Fuzzy Control is often
used to represent non-dichotomous knowledge. Besides the
possibility to use fuzzy sets in inference processes
(denominated as approximate reasoning) [25], Fuzzy Set

Theory also can be used to draw conclusions from (imprecise)
premises which are not identical to the antecedents of the
knowledge base (denominated as plausible reasoning) [28].
Huge fuzzy knowledge bases can require too much computing
power, however, especially if the linguistic variables include
many terms. [6] and [10] give a survey on these problems in
their first section, including a summary on suggested
approaches to solve these problems. Another problem is that
the implementation depends on the definition of suitable
linguistic variables and fuzzy sets as well as on the choice of
the appropriate inference method, operators etc. It is not
always apparent how the number and shape of fuzzy sets will
effect the result of the inference process, especially because it
might depend on the selected inference method. On the other
hand the inference method to be selected depends on the
modeling of the imprecise knowledge, since not all fuzzy
inference methods are suitable for all kinds of problems (see,
for example [5], [21], [26], [27]).

Our interest is to develop an efficient method which is
suitable to represent imprecise knowledge as well as the
reasoning processes as such and which is simple enough to
have a high degree of practical usability to solve real world
problems. We thus start with the question of how human
beings express (i.e. verbalize) imprecise knowledge.

A typical method to formulate knowledge are IF-THEN
statements. The IF-condition can either be true or false; other
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states are not possible in two valued logic. The same holds for
the THEN-conclusion, which – depending on the state of the
IF-condition – is either true or not. It is thus difficult to
represent imprecise knowledge with simple IF-THEN
statements. Often it is reasonable to represent imprecise
knowledge in terms of  THE-MORE-THE statements rather
than in terms of IF-THEN statements, because the first in
certain situations is closer to the linguistic verbalization of
knowledge and thus simplifies knowledge implementation,
validation and application.

As an example, if we ask a person (who is not familiar with
mathematical logic) how he would slow down his car if a very
slow car is in front of him, he might answer “If the distance to
the car in front is too short, I will start braking”. This
statement is incomplete and does not reflect the complete
knowledge of that person. Asking to specify “start braking”
and maybe additionally “How do you proceed with start
braking, and how much would you brake?”, the person would
probably answer something like “Ok, the shorter the distance,
the more I will slow down my car”. We consider this as an
imprecise statement. It clearly states the relation between
distances and decelerating force without specifying it in detail,
e.g. as a functional description. The reason is simply that the
human “expert” is typically not able to provide a mathematical
or functional description of his knowledge. Nevertheless he is
able to formulate his knowledge and apply it to solve the
problem perfectly.

Even plausible reasoning is not ideal to express imprecision
in THE-MORE-THE statements. Hence we propose in this
paper a new framework to handle this kind of reasoning.

In Section 2 we will define the framework by its notions and
axioms. Section 3 will discuss the representation of imprecise
knowledge, while Section 4 focuses on the characteristics of
the new method presented in this paper. In Section 5 we
discuss differences to mathematical logics such as two-valued
logic. While the axiomatic framework gives a formal
definition only, one suggestion for an application oriented
specialization is given by scalar fuzzy control (SFC) [16].
Section 6 gives an introduction to this approach and proves
that it is a member of the framework defined in Section 2.
Section 7 illustrates how to use SFC by applying it to the well
known inverted pendulum problem.

2. An axiomatic framework for representing imprecise
Knowledge

2.1. Definitions
We introduce the framework by defining the following

notions:

• truth values
• constants
• variables
• operators
• terms
• predicates

• conjunctors
• formula

Definition 1.  A truth value is defined as a real value lying in
the unit interval [0,1].
The extremes 0 and 1 shall be interpreted as “completely
false” and “completely true” respectively, while values in
between 0 and 1 indicate partial truth.

The unit interval was chosen according to Boolean logic and
algebra, where the two symbols “0” and “1” are used as the
two truth values.

Very often the “degree of truth” is expressed by choosing an
appropriate truth value as a real number lying on the unit
interval. Here statements are represented in terms of imprecise
relations. Hence, imprecision is determined by the evaluation
of the imprecise relations directly.

Definition 2.  All real numbers z ∈ ℜ are constants.

Definition 3.  v is a variable if and only if its value r is a real
numbers, i.e. r ∈ ℜ.

Definition 4.  Operators are all algebraic one-place and
multiple-place operators.

All operators known from algebra like addition, subtraction
etc. as well as trigonometric functions etc. are valid operators.

Definition 5.  Terms are defined by:
1. A constant is a term.
2. A variable is a term.
3. If t1 ... tn with n≥1 are terms and f is a n-place operator,

then f(t1, ..., tn) is a term too.
4. No other terms exist.

In order to make it possible to represent THE-MORE-THE
statements we now have to introduce a new class of predicates,
which differ from the classical predicates such as “less”,
“greater”, etc. Since they are derived from these, however, we
call them extended predicates.

Definition 6.  The following extended predicates are defined
for all terms x, y:

extended equal: Ee(x, y) : ℜ × ℜ → [0,1]
extended not equal: NEe(x, y) : ℜ × ℜ → [0,1]
extended less: Le(x, y) : ℜ × ℜ → [0,1]
extended greater: Ge(x, y) : ℜ × ℜ → [0,1]

The following notions will be used for the extend
predicates:

extended equal: yx
e

=

extended not equal: yx
e

≠

extended less: yx
e

<

extended greater: yx
e

>

According to the extended predicates we introduce extended
conjunctors to represent imprecise combinations:
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Definition 7.  The following extended conjunctors are defined
for truth values w, respectively wi, i=1..n:

extended NOT: NOTe(w) : [0,1]  → [0,1]
averaging AND: ANDav(w1, ... , wn) : [0,1]n → [0,1]
averaging OR: ORav(w1, ... , wn) : [0,1]n → [0,1]

Alternative notions used below are:

extended NOT: )(w
e

¬

averaging AND:
n

avav

www ∧∧ K21

averaging OR:
n

avav

www ∨∨ K21

Finally we define formulas:

Definition 8.  Formulas are defined by:
1. Any truth value w ∈ [0,1] is a formula.
2. If t1 ... tn with n≥1 are terms and p is a n-place predicate,

then p(t1, ..., tn) is a formula too.
3. If f1 ... fn with n≥1 are formulas and j is a n-place

conjunctor, then j(f1, ..., fn) is a formula too.
4. No other formula exist.

2.2. Axioms
We define the framework by a set of axioms:

Definition 9.  A mathematical method according to
Definitions 1 through 8 is called Calculus of Imprecise
Knowledge if and only if the following axioms are satisfied.

Axioms for the extended predicates:
For all x, y ∈ ℜ:
P1) The predicates Ee and NEe are commutative, i.e.

Ee(x, y) ≡ Ee(y, x)
NEe(x, y) ≡ NEe(y, x)

The predicates Le and Ge are reciprocal commutative,
i.e.

Le(x, y) ≡ Ge(y, x)
P2) The predicates Ee, NEe, Le and Ge are symmetric in the

following sense:
Ee(y–a, y) ≡ Ee(y+a, y)
NEe(y–a, y) ≡ NEe(y+a, y)
Le(y–a, y) ≡ 1 – Le(y+a, y)
Ge(y–a, y) ≡ 1 – Ge(y+a, y)

P3) The predicates Ee, NEe, Le and Ge are symmetric in the
following sense:

Ee(x, y) ≡ 1 – NEe(y, x)
Le(x, y) ≡ 1 – Le(y, x)
Ge(x, y) ≡ 1 – Ge(y, x)

P4) The predicates Ee, NEe, Le and Ge are reflexive in the
following sense:

Ee(x, x) ≡ 1 (x is identical to x)
NEe(x, x) ≡ 0 (x is identical to x)
Le(x, x) ≡ 0.5 (x is neither greater nor less than x)
Ge(x, x) ≡ 0.5 (x is neither greater nor less than x)

P5) For fixed y and x ∈ ℜ:
Ee(x, y) is strictly monotonically

increasing for x ≤ y
Ee(x, y) is strictly monotonically

decreasing for x ≥ y
NEe(x, y) is strictly monotonically

decreasing for x ≤ y
NEe(x, y) is strictly monotonically

increasing for x ≥ y
Le(x, y) is strictly monotonically

decreasing
Ge(x, y) is strictly monotonically

increasing
For fixed x and y ∈ ℜ:

Ee(x, y) is strictly monotonically 
decreasing for x ≤ y

Ee(x, y) is strictly monotonically
increasing for x ≥ y

NEe(x, y) is strictly monotonically
increasing for x ≤ y

NEe(x, y) is strictly monotonically
decreasing for x ≥ y

Le(x, y) is strictly monotonically
increasing

Ge(x, y) is strictly monotonically
decreasing

P6) All predicates are continuously differentiable functions
in ℜ2.

Axioms for the extended conjunctors:
For all x, y ∈ ℜ:
J1) The extended NOT is defined by:

NOTe(w) = 1 – w
J2) The conjunctors ANDav and ORav are commutative, i.e.

ANDav(w1,w2,...wn) = ANDav(w2,w1,...wn) = ...
ORav    (w1,w2,...wn) = ORav     (w2,w1,...wn) = ...

J3) The conjunctors ANDav and ORav have an “averaging”
characteristic, i.e.
ANDav(w1,w2,...wn) = min(w2,w1,...wn)+∆ANDav

ORav     (w1,w2,...wn) = max(w2,w1,...wn)–∆ORav

with:
1. ∆ANDav = ∆ANDav(w1, w2, ... wn)

∆ORav   = ∆ORav  (w1, w2, ... wn)
2. For w1=w2=...=wi:

∆ANDav = 0  and  ∆ORav = 0
all other cases:

0 < ∆ANDav <
max(w1,w2,...wn)–min(w1,w2,...wn)

0 < ∆ORav <
max(w1,w2,...wn)–min(w1,w2,...wn)

3. ∆ANDav(w1,...,wi,...wn)<∆ANDav(w1,...,wi+δ,...wn)
for wi ≠ min(w1, w2, ... wn),  i ∈ {1...n}
and  wi < wi + δ ≤ 1

∆ORav(w1,...,wi,...wn)<∆ORav(w1,...,wi–δ,...wn)
for wi ≠ max(w1, w2, ... wn),  i ∈ {1...n}
and  0 ≤ wi – δ < wi

J4) The conjunctors ANDav and ORav are continuous
functions in ℜn .
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Axiom P1 claims that the predicates Ee and NEe are
commutative, which is quite obvious: if we say that x is
similar to y up to a certain degree, y should be similar to x to
the same extent. A similar intention underlies axioms P2 and
P3 which claims a symmetric behavior of the predicates.
Notice that both use the extended NOT of axiom J1. Axiom P4
claims the reflexivity which is also obvious. As an example, x
is in fact equal to x, so the result of the extended predicate Ee

should be identical to the result of the corresponding Boolean
predicate. Axioms P5 and P6 claim that the extended
predicates are monotonic and continuously differentiable
functions. This is important in order to receive smooth solution
spaces when applying the extended predicates to solve
problems. As an example, using extended predicates with non
monotonic and/or non-steady behavior as well as a non-steady
derivation in control applications can lead to oscillating and/or
unstable system behavior.

Axiom J1 defines the extended NOT. As the extended
predicates the extended conjunctors should be commutative
too, as claimed by axiom J2. In this paper we discuss
“averaging” conjunctors. So ANDav is always greater than the
minimum, i.e. ANDav(w1, w2) is not a t-norm [13]. Similar
ORav is always less than the maximum, i.e. ORav(w1, w2) is not
an s-norm [13]. Axiom J3-1 claims that the degree of
“averaging” depends on the truth values w1 ... wn only. From
J3-2 it follows, that ANDav(w1, w2, ... wn) will never be larger
than the greatest value of w1 ... wn and that ORav(w1, w2, ... wn)
will never be less than the lowest value of w1 ... wn. From this
we call the extended conjunctors averaging conjunctors. One
might also think of a non-averaging AND and OR in the style
of a t-norm and an s-norm, but this shall not be further
discussed in this paper. J3-3 claims for ANDav, that if all truth
values w1 ... wn stay the same except one, which is not the
smallest one and which is increasing, than the compensation
will increase too. This thus results in an increased truth value
for the ANDav conjunction. Similar is true for ORav. Finally
axiom J4 again claims a continuous function in order to
receive smooth solution spaces.

3. Representation of imprecise knowledge

Before considering the characteristics of the Calculus of
Imprecise Knowledge defined above, we first want to discuss
its use. Doing so we want to stress that this framework is
application oriented. Furthermore, it might help the reader to
understand the intention and purpose of its usage.

As already discussed, knowledge is quite often represented
by IF-THEN statements. A typical inference method to apply
knowledge represented in terms of IF-THEN statements is
Modus Ponens. Here, a statement is implemented as an
implication, using the two-place implication conjunctor. In the
Calculus of Imprecise Knowledge discussed here no
implication conjunctor is used. The inference method bases on
the extended predicates instead. We thus avoid all problems
implication conjunctors may have within many-valued logics.

We reconsider our example in the introduction and
demonstrate the knowledge representation in terms of THE-
MORE-THE statements:

Example 1:
THE MORE my distance to the car in front decreases,
THE more I will slow down my car.

Denoting the condition by A and the conclusion by B, we
obtain:

THE MORE A, THE more B .

To simplify writing, we use the following notation

BA
E

→ (1)

where 
E

→   symbolizes the extended path of reasoning, i.e. it is
not an implication conjunctor.

An imprecise statement could also express a “negative”
relation, such as in

Example 2:
THE MORE I have to save money,
THE less I will spend my money on

buying cars

which is symbolically written as







¬→ BA

eE (2)

with again A being the condition and B
e

¬  being a "negative"
conclusion.

The condition A may be composed of several antecedents,
which are “combined” by the extended conjunctors.

Given the premise A’ ≠ A we now ask for the conclusion B’,
which might be close to B but not necessarily identically to B,
depending on the underlying knowledge. Following the idea of
the Generalized Modus Ponens [28], we introduce the
Extended Modus Ponens:

Statement: BA
E

→ Statement: BA
eE

¬→

Premise:  A ’ Premise:  A ’

Conclusion:  B ’ Conclusion:  B ’

which can  be symbolically written as

'|,' BBAA
EE

→



 → , '|,' BBAA

EeE

→



 ¬→ (3)

respectively.
The advantage of the Calculus of Imprecise Knowledge is

that the imprecise conditions and conclusions of knowledge
can directly be formulated by using the extended predicates
and conjunctors. To illustrate this, we will extend our Example
1 to

Example 3:
THE MORE my distance to the car in front decreases
AND the more my speed is high,
THE more I will slow down my car.



M. F. Mlynski, H.J. Zimmermann / Applied Soft Computing 8 (2008) 1050-1067 5

which we write as

.BSD
Eav

→





 ∧ (4)

The next step is to specify the two antecedents D and S.
Distances of 20 m or less might be understood as a short
distance and speeds above 80 km/h might be high, so we
would obtain

Bsd
Eeave

→















 >∧






 < km/h 80m 20 (5)

where d is the distance in m and s the speed in km/h. One
might be confused that we state exact values in the antecedents
(20 m, respectively, 80 km/h) while we are talking about
imprecise knowledge. But in fact, when we ask people from
what value they think that the distance to the front car is (too)
short, most of them would reply something like “well, from
about 20 m”. Although a concrete value is given (20 m), the
complete statement is imprecise, emphasized by the phrase
“about”. Psycho-linguistic examinations have shown that even
for imprecise statements it is very often easy to state a
concrete value, denominated as anchor-point [28]. Using
Calculus of Imprecise Knowledge the concrete value (20 m) is
used and the imprecision of the statement is implemented by
the usage of the extended predicates.

The result of the imprecise comparison is a truth value,
which is characterized by the definition and axioms of the
extended predicate. Anticipating some results of the detailed
discussion of the Calculus of Imprecise Knowledge in the
following section, we observe that the result of any (simple or
combined) condition is always a truth value w ∈ [0,1].

To complete Example 3, we have to ask for the details of
the conclusion, i.e. how much force should be used to slow
down the car. We should orient our selfs on an emergency
braking where the maximum decelerating force is needed, to
cover all possible situations. Given that the maximum
decelerating force for an emergency braking is for example 75
N, we would obtain

















 >∧






 <⋅= km/h 80m 20N 75

eave

sdB (6)

which is the representation of our imprecise knowledge. Using
Extended Modus Ponens, we now have the premises d’ (actual
distance) and s’ (actual speed). The corresponding decelerating
force B’ is calculated by simply substituting d by d’ and s by
s’, i.e.

















 >∧






 <⋅= km/h 80'm 20'N 75'

eave

sdB   . (7)

From this, the extended Modus Ponens is realized by
directly applying the actual values to the implemented
imprecise statements.

A yet open question is a functional definition of the
extended predicates and conjunctors. While the Calculus of
Imprecise Knowledge gives an axiomatic definition only, one
suggestion for a concrete implementation is given by scalar
fuzzy control (see Section 6).

4. Characteristics of the Calculus of Imprecise Knowledge

The Calculus of Imprecise Knowledge has some important
characteristics. We start by discussing the extended predicates,
followed by the extended conjunctors and combinations of
both. All theorems are discussed to facilitate the understanding
and show their relevance.

Theorem 1.  The extended predicates satisfy:









><
==
<<

y for x 0.1
y for x 0.1

y for x 0.1

),( yxEe









>>
==
<>

y for x 0.1
y for x 0.0
y for x 0.1

),( yxNEe









><
==
<>

y for x 5.0
y for x 5.0

y for x 5.0

),( yxLe









>>
==
<<

y for x 5.0
y for x 5.0

y for x 5.0

),( yxGe

Proof:
1. For x = y  the assertion is given by axiom P4.
2. For x ≠ y:

a) 0.1),(E),(E
)4(e)5(e PP

yyyx =<

for x < y as well as x > y
b) 0.0),(NE),(NE

)4(e)5(e PP
yyyx =>

for x < y as well as x > y
c) 5.0),(L),(L

)4(e)5(e PP
yyyx =>

for x < y
5.0),(L),(L

)4(e)5(e PP
yyyx =<

for x > y
d) 5.0),(G),(G

)4(e)5(e PP
yyyx =<

for x < y
5.0),(L),(G

)4(e)5(e PP
yyyx =>

for x > y ¨

In Example 3, where the imprecise statement “the more the
distance decreases” is represented by







 < m 20

e

d (8)

Theorem 1 states, that given the premise d’ = 20m the truth
value of the imprecise statement is 0.5, which is neither true
nor false and thus results in a "mediocre" conclusion. It is
important to understand this relation between the terms and the
extended predicate. In other words, when refining imprecise
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knowledge one should not think of the distance where one
would very, very slightly start to break, nor of the distance
where an emergency breaking is necessary, but of the distance
where a moderate deceleration would be advisable. In fact,
this is what typically is replied when asking from what value
the distance to the front car is supposed to be too short and
braking is advisable: Most people ask themselves, at what
distance they would moderately brake instead of when they
would slightly touch the brake pedal or when they would
perform an emergency braking.

Theorem 2.  For |x – y| → ∞ the extended predicates behave
like the Boolean predicates, i.e.:

0),(lim e||
=

∞→−
yxE

yx

1),(lim e||
=

∞→−
yxNE

yx

1),(limand0),(lim e)(e)(
==

−∞→−+∞→−
yxLyxL

yxyx

0),(limand1),(lim e)(e)(
==

−∞→−+∞→−
yxGyxG

yxyx

Proof:
1. According to Definition 6 it is necessary that

0 ≤ Ee(x, y) ≤ 1
For fixed y and x→±∞ from axiom P5 follows:
Ee(x, y) → 0
For fixed x and y→±∞ from axiom P5 follows:
Ee(x, y) → 0

2. According to Definition 6 it is necessary that
0 ≤ NEe(x, y) ≤ 1
For fixed y and x→±∞ from axiom P5 follows:
NEe(x,y)→1
For fixed x and y→±∞ from axiom P5 follows:
NEe(x,y)→1

3. According to Definition 6 it is necessary that
0 ≤ Le(x, y) ≤ 1
For fixed y and x→+∞ from axiom P5 follows:
Le(x, y) → 0
For fixed y and x→ -∞ from axiom P5 follows:
Le(x, y) → 1
For fixed x and y→+∞ from axiom P5 follows:
Le(x, y) → 1
For fixed x and y→ -∞ from axiom P5 follows:
Le(x, y) → 0

4. According to Definition 6 it is necessary that
0 ≤ Ge(x, y) ≤ 1
For fixed y and x→+∞ from axiom P5 follows:
Ge(x,y) → 1
For fixed y and x→ -∞ from axiom P5 follows:
Ge(x,y) → 0
For fixed x and y→+∞ from axiom P5 follows:
Ge(x,y) → 0
For fixed x and y→ -∞ from axiom P5 follows:
Ge(x,y) → 1 ¨

Theorem 2 states, that if premise and antecedent are
“totally” different, than the imprecise comparison (represented

by an extended predicate) becomes “totally” true respectively
“totally” false. This is also an important characteristic, because
it reflects a basic nature of imprecise knowledge. In the
Example 3 it is thus possible that we obtain no braking at all,
if the distance to the car in front becomes big enough, which is
clearly reasonable and represents the human intention.

Theorem 3.  The extended predicates satisfy:
Ee(x, y) ≡ Ee(x+a, y+a)
NEe(x, y) ≡ NEe(x+a, y+a)
Le(x, y) ≡ Le(x+a, y+a)
Ge(x, y) ≡ Ge(x+a, y+a)

Proof:
1. 

)2(e)(e ),(),(
Payx

yayEyxE =−=
−=

)1(e)(e ),a(y),a(y
Paxy

axEyE =++=+
+=

),a(xe ayE ++
2. 

)2(e)(e ),(),(
Payx

yayNEyxNE =−=
−=

)1(e)(e ),a(y),a(y
Paxy

axNEyNE =++=+
+=

),a(xe ayNE ++
3. 

)2(e)(e ),(),(
Payx

yayLyxL =−=
−=

)3(e)(e ),(-1),(-1
Paxy

axayLyayL =++=+
+=

),(e ayaxL ++
4. 

)2(e)(e ),(),(
Payx

yayGyxG =−=
−=

)3(e)(e ),(-1),(-1
Paxy

axayGyayG =++=+
+=

),(e ayaxG ++ ¨

This characteristic might lead to confusion, because
someone could think that it prevents a reasonable represen-
tation of imprecise knowledge. In Example 3, if we have a
premise of d’=20 m using formula (8) results in a truth value
of 0.5, which is reasonable. If we now add 1080 m to both
parts of the antecedent we obtain







 < m 20002

e

d (9)

as the imprecise statement. For a premise d2’ = 2000 m, the
truth value of the imprecise statement is again 0.5. This may
not sound reasonable, because a moderate braking (which
would result from a truth value 0.5) at a distance of 2000 m is
clearly to much; no braking at all would be advisable instead.
The mistake is that formula (9) does not represent the
imprecise knowledge of our car-example any more, because
we have changed the antecedent – the value of 2000m is much
to high for a car. But if we transfer our knowledge to a similar,
yet slightly different problem, e.g. braking a medium-sized
ship, a distance of 2000 m might be suitable for a moderate
braking. Theorem 3 states this characteristic: the extended
predicates “behave” in the very same manner for our “ship-
problem” as for our “car-problem”.
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Theorem 4.  “Extended transitivity”; the extended predicates
satisfy:

1. From 5.0≥





 < yx

e

and 5.0≥





 < zy

e

follows 5.0≥





 < zx

e

2. From 5.0≥





 > yx

e

and 5.0≥





 > zy

e

follows 5.0≥





 > zx

e

Proof:
1. Le(x, y) ≥ 0.5   ⇒   x ≤ y

Le(y,  z) ≥ 0.5   ⇒   y ≤ z
Thus:  x ≤ z  ⇒  Le(x, z) ≥ 0.5

2. Ge(x, y) ≥ 0.5   ⇒   x ≥ y
Ge(y, z) ≥ 0.5   ⇒   y ≥ z
Thus:  x ≥ z  ⇒  Ge(x, z) ≥ 0.5 ¨

Theorem 4 is of mainly theoretical interest. It demonstrates
that by introducing extended predicates, also transitivity is
extended.

Theorem 5.  “De’Morgan law for extended predicates”.

1. 





 ≠=






 = yxyx

ee

eNOT

2. 





 ==






 ≠ yxyx

ee

eNOT

3. 





 >=






 < yxyx

ee

eNOT

4. 





 <=






 > yxyx

ee

eNOT

Proof:
1. ( ) ),(NE),(E1),(ENOT e)3(e)5(ee yxyxyx

PJ
=−=

2. ( ) ),(E),(NE1),(NENOT e)3(e)5(ee yxyxyx
PJ
=−=

3. ( )
)1(e)3(e)5(ee ),(L),(L1),(LNOT

PPJ
xyyxyx ==−= ),(G e yx

4. ( )
)1(e)3(e)5(ee ),(G),(G1),(GNOT

PPJ
xyyxyx ==−=

),(Le yx ¨

If people negate a statement, however, they do not always
have the very same intention as if they would have used the
opposite relation descriptor. Basically, it depends on the
context if both express the very same understanding. This
should be taken into consideration when acquiring knowledge
and representing it by the Calculus of Imprecise Knowledge.
Here the De’ Morgan laws hold (see Theorem 9) and the
double negation is the original statement, due to its basic
axioms:

Theorem 6.  Double negation will result in the original truth
value, i.e.

NOTe (NOTe (w) ) = w

Proof:
NOTe (NOTe (w) ) = 1 – (1 – w) = w ¨

This characteristic directly follows from axioms J1 and
should be taking into consideration when applying the method.

Theorem 7.  The averaging conjunctors are idempotent, i.e.:
1. ANDav(w, w, ... w) = w
2. ORav(w, w, ... w) = w

Proof:
1. Due to axiom J3:

( ) ( )
.)2,3(ANDav)3(av ,,min,,AND

JJ
wwwwww =∆+= KK

( ) wwww =+ 0,,min K

2. Due to axiom J3:
( ) ( )

.)2,3(ORav)3(av ,,max,,OR
JJ

wwwwww =∆−= KK

( ) wwww =− 0,,max K ¨

Since the extended conjunctors are averaging conjunctors, it
is reasonable that they are idempotent. It must be stressed
again that averaging conjunctors are not sufficient to represent
all styles of linguistic conjunctions, but that further
conjunctors, e.g. aggregating conjunctors, are required. It will
be part of our future work to integrate such additional
conjunctors into the Calculus of Imprecise Knowledge.

Theorem 8.  0 and 1 are neutral truth values, such that:
1. ANDav(1,1, ...1) = 1
2. ANDav(0,0, ...0) = 0
3. ORav   (1,1, ...1) = 1
4. ORav   (0,0, ...0) = 0

Proof:
This characteristic directly follows from the Theorem 7.¨

Theorem 8 is of mainly theoretical interest. It shows that 0
and 1 are neutral truth values as known from Boolean logic.

Theorem 9.  “De’Morgan law for extended conjunctors”.
Given that ∀ a, b ∈ [0,1]

∆ANDav(a, b) = ∆ORav(1–a, 1–b)
∆ORav(a, b) = ∆ANDav(1–a, 1–b)

than it is necessary that:

1. 





 ∨=






 ∧ )(NOT)(NOTNOT baba e

av

e

av

e

2. 





 ∧=






 ∨ )(NOT)(NOTNOT baba e

av

e

av

e

Proof:
1. a) a = b
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NOTe(ANDav(a, b)) =
1 – ANDav(a, b) =
1 – (min(a,b) + 0) = 1 – a

ORav(NOTe(a), NOTe(b)) =
ORav((1–a), (1–b)) =
max(1–a, 1–b) – 0 = 1 – a

b) a < b
NOTe(ANDav(a, b)) =

1 – ANDav(a, b) =
1 – (min(a,b) + ∆ANDav(a,b)) =
1 – a – ∆ANDav(a,b)

ORav(NOTe(a), NOTe(b)) =
ORav((1–a),(1–b)) =
max(1–a,1–b) – ∆ORav(1–a,1–b) =
1 – a – ∆ANDav(a,b)

c) a > b
NOTe(ANDav(a, b)) =

1 – ANDav(a, b) =
1 – (min(a,b) + ∆ANDav(a,b)) =
1 – b – ∆ANDav(a,b)

ORav(NOTe(a), NOTe(b)) =
ORav((1–a),(1–b)) =
max(1–a,1–b) – ∆ORav(1–a,1–b) =
1 – b – ∆ANDav(a,b)

2. a) a = b
NOTe(ORav(a, b)) =

1 – ORav(a, b) =
1 – (max(a,b) – 0) = 1 – a

ANDav(NOTe(a), NOTe(b)) =
ANDav((1–a), (1–b)) =
min(1–a, 1–b) + 0 = 1 – a

b) a < b
NOTe(ORav(a, b)) =

1 – ORav(a, b) =
1 – (max(a,b) – ∆ORav(a,b)) =
1 – b + ∆ORav(a,b)

ANDav(NOTe(a), NOTe(b)) =
ANDav((1–a),(1–b)) =
min(1–a,1–b) + ∆ANDav(1–a,1–b) =
1 – b + ∆ORav(a,b)

c) a > b
NOTe(ORav(a, b)) =

1 – ORav(a, b) =
1 – (max(a,b) – ∆ORav(a,b)) =
1 – a + ∆ORav(a,b)

ANDav(NOTe(a), NOTe(b)) =
ANDav((1–a),(1–b)) =
min(1–a,1–b) + ∆ANDav(1–a,1–b) =
1 – a + ∆ORav(a,b) ¨

Theorem 9 again follows from the axioms of the imprecise
knowledge. In fact, since the extended predicates follow the
De’ Morgan laws it is important that the extended conjunctors
follow the De’ Morgan laws too. Everything else could lead to
confusion.

5. Differences to Mathematical Logics

In this section differences between the Calculus of
Imprecise Knowledge presented here and mathematical logics
are discussed. We will furthermore show that it is necessary
and important to use a method that is different from two-
valued logic if imprecise knowledge is represented.

Theorem 10.  The truth value of union and intersection,
respectively, of a statement and its complement can not be
reduced to a downright truth value, i.e.:

ANDav(w, NOTe(w)) = 0 and
ORav   (w, NOTe(w)) = 1

are not satisfied for ∀ w ∈ [0,1]!

Proof:
1. Assumption:

ANDav(w, NOTe(w)) = 0 is true
for ∀ w ∈ [0,1]

For w < 0.5 we obtain:
ANDav(w, NOTe(w)) =
ANDav(w, 1–w) =
min(w, 1–w) + ∆ANDav = w + ∆ANDav > 0
since ∆ANDav > 0

Contradiction ⇒ the assumption is false.
2. Assumption:

ORav(w, NOTe(w)) = 1 is true
for ∀ w ∈ [0,1]

For w < 0.5 we obtain:
ORav(w, NOTe(w)) =
ORav(w, 1–w) =
max(w, 1–w) – ∆ORav = 1 – w – ∆ORav < 1
since ∆ORav > 0

Contradiction ⇒ the assumption is false. ¨

While the characteristic of Theorem 10 is valid for a two-
valued logic, it is not meaningful if many (or infinite) truth
values are used.

Imagine the statement “A tomato is red AND it is not red”.
Possible premises are, among other, a red tomato (truth value
1), an unripe and thus green tomato (truth value 0) or a slightly
red tomato (truth value greater than 0 and less than 1). For a
red tomato it is meaningful that the statement “The tomato is
red AND it is not red” is “totally false”. However, for a
slightly red tomato it is reasonable, that the statement “The
tomato is red AND it is not red” is neither “totally true” nor
“totally false”, but something in between.

Theorem 11.
ANDav(w, 1) = w
ORav   (w, 0) = w

are not satisfied for ∀ w ∈ [0,1]!

Proof:
1. Assumption:

ANDav(w, 1) = w  is true for ∀ w ∈ [0,1]
We have:

ANDav(w, 1) = min(w, 1) + ∆ANDav =
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w + ∆ANDav with  ∆ANDav>0  for  w ≠ 1
Contradiction ⇒ the assumption is false.

2. Assumption:
ORav(w, 0) = w  is true for ∀ w ∈ [0,1]

We have:
ORav(w, 0) = max(w, 0) – ∆ORav =
w – ∆ORav with  ∆ORav>0  for  w ≠ 0

Contradiction ⇒ the assumption is false. ¨

Since the extended conjunctors are supposed to be
averaging conjunctors, it is directly necessary that the
characteristic as stated in Theorem 11 is not satisfied.

In Example 3 one condition could be fulfilled to a medium
degree (e.g. distance is quite low) and the other condition
completely (e.g. speed is extremely high). The conclusion that
the AND-combination of both should be fulfilled with the truth
value of the first condition, i.e. ANDav(w, 1) = w is definitely
not what is intended, since it would result in exactly the same
braking force as if the second condition would be moderately
fulfilled too (speed is quite low), i.e. ANDav(w, w) = w (see
Theorem 7). It is thus meaningful, that the characteristic as
stated in Theorem 11 is not fulfilled for the Calculus of
Imprecise Knowledge.

Theorem 12.  The extended conjunctors are not associative,
i.e.:

ANDav(a,ANDav(b,c)) = ANDav(ANDav(a,b),c)
ORav(a,ORav(b,c)) = ORav(ORav(a,b),c)

are not satisfied for ∀ a, b, c ∈ [0,1]!

Proof:
1. Assumption:

ANDav(a,ANDav(b,c))= ANDav(ANDav(a,b),c)
is true for ∀ a, b, c ∈ [0,1]

For a<b and a<c and b=c we obtain:
ANDav(a,ANDav(b,c)) =
ANDav(a,b) =
min(a,b)+∆1 = a+∆1

with ∆1 = ∆ANDav(a,b) > 0
ANDav(ANDav(a,b),c) =
ANDav(min(a,b)+∆1,c) =
ANDav(a+∆1,c)

For all c > a+∆1 we obtain:
ANDav(ANDav(a,b),c) =
min(a+∆1,c)+∆2 = a+∆1+∆2

with ∆2 = ∆ANDav(a+∆1,c) > 0
Contradiction ⇒ the assumption is false.

2. Assumption:
ORav(a,ORav(b,c)) = ORav(ORav(a,b),c)
is true for ∀ a, b, c ∈ [0,1]

For a<b and a<c and b=c we obtain:
ORav(a,ORav(b,c)) =
ORav(a,b) =
max(a,b) – ∆1 = b – ∆1

with ∆1 = ∆ORav(a,b) > 0
ORav(ORav(a,b),c) =

ORav(max(a,b)–∆1, c) =
ORav(b–∆1, c)

For all c > a+∆1 we obtain:
ORav(ORav(a,b),c) =
max(b–∆1, c) – ∆2 = b – ∆1 – ∆2

with ∆2 = ∆ORav(b–∆1,c) > 0
Contradiction ⇒ the assumption is false. ¨

Again, since the extended conjunctors are supposed to be
averaging conjunctors, it is directly necessary that they are not
associative. As an example, ANDav(0,1) should be greater than
0 and ANDav(d,1) should be greater than d, given that d is less
than 1. We thus have that ANDav(0,ANDav(1,1)) = ANDav(0,1)
should be greater than 0 while ANDav(ANDav(0,1),1) =
ANDav(0+∆1,1) should be greater than ∆1 and thus greater than
ANDav(0,ANDav(1,1)).

If we have to represent three imprecise conditions c1, c2 and
c3 which should be combined and the order should not be of
any importance, than the correct representation is ANDav(c1,
c2, c3) rather than ANDav(c1, ANDav(c2, c3)).

Theorem 13.  There exists no absorption law, i.e.:
ANDav(a,ORav(a,b)) = a
ORav(a,ANDav(a,b)) = a

are not satisfied for ∀ a, b ∈ [0,1]!

Proof:
1. Assumption:

ANDav(a,ORav(a,b)) = a
is true for ∀ a, b ∈ [0,1]

For a<b we obtain:
ANDav(a,ORav(a,b)) =
min(a, max(a,b)–∆ORav)+∆ANDav =
min(a, b–∆ORav) + ∆ANDav

For all a < b–∆ORav we obtain:
ANDav(a,ORav(a,b)) = a + ∆ANDav ≠ a
since ∆ANDav > 0

Contradiction ⇒ the assumption is false.
2. Assumption:

ORav(a,ANDav(a,b)) = a
is true for ∀ a, b ∈ [0,1]

For a>b we obtain:
ORac(a,ANDac(a,b)) =
max(a, min(a,b)+∆ANDac)–∆ORac =
max(a, b+∆ANDac) – ∆ORac

For all a > b+∆ANDac we obtain:
ORac(a,ANDac(a,b)) = a – ∆ORav ≠ a
since ∆ORac > 0

Contradiction ⇒ the assumption is false. ¨

Yet, since the extended conjunctors are of averaging type
and the degree of compensation depends on the parameters
according to axiom J2, an absorption by means of nesting
should not be possible.

This can be illustrated by the imprecise statement of
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Example 4:
THE MORE I need a new car  AND  I have

money available
 OR the more I need a new car

THE more     I should go for buying a new car

where it is obvious, that it is not the intention that the
condition “I have money available” should be absorbed by the
formulated conditions and their interrelations. Instead, there is
a good reason for not simply stating

THE MORE I need a new car
THE more I should go for buying a

new car .

 The nesting of the statements reflect some "weighting". If
only "I need a new car" is considerably satisfied (truth value
above 0.5), than the conclusion is not that much indicated as if
both, "I need a new car" and "I have money available" are
highly satisfied.

6. Scalar fuzzy control

6.1. Method
The Calculus of Imprecise Knowledge is an axiomatic

framework to handle imprecise knowledge. An application
oriented specialization is given by scalar fuzzy control (SFC)
[16], where the extended predicates and conjunctors are
defined in terms of fuzzy sets. These imprecise operators can
directly be applied to real-valued data, i.e. the data and
antecedents are not transformed into linguistic variables and
matrices. Fuzzification of (input) data and defuzzification of
results is thus not required.

This section gives an introduction to SFC, including the
definition and discussion of operators. We then prove in
Section 6.4 that the SFC is a specialization of the Calculus of
Imprecise Knowledge as defined in Section 2.

Using the imprecise SFC operators linguistic knowledge can
directly be transformed into a mathematical representation
without the need of defining multi-dimensional linguistic
variables nor choosing appropriate inference and defuzzi-
fication methods. The underlying idea is, that imprecise rules
such as in Example 5a may not be well represented by a set of
corresponding rules as in Example 5b (Mamdami like
inference), but rather by a single rule as in Example 5c, which
is as close as possible to the original linguistic wording.

Example 5a:
The more the water is cold,
the more hot water has to be turned on

Example 5b:
IF water is very_cold
THEN hot water valve is completely_open
IF water is cold
THEN hot water valve is partly_open
IF water is medium
THEN hot water valve is half_open

IF water is hot
THEN hot water valve is partly_closed
IF water is very_hot
THEN hot water valve is completely_closed

Example 5c:
THE MORE the water is less than 40°C,
THE more hot water has to be turned on.

It must be emphasized that an isolated rule such as of
Example 5a could be implemented by using a linguistic
variable which is defined by just one fuzzy set (e.g. “cold”). In
this case, just one rule would be required in Example 5b. In
reality linguistic variables are often used in several up to
dozens of rules and thus require to be defined by more than
just one fuzzy set. Using a Mamdani like inference, several
rules must be implemented then.

An implementation according to Example 5c shrinks the
rulebase, because the number of rules to be implemented is
reduced. The size of knowledge bases is further reduced since
it is not necessary to define linguistic variables. Rather than
transforming real measured values (e.g. water temperature in
Example 5) to corresponding linguistic variables, the
implemented rule directly uses the measured values. The
imprecision of the rule is then not represented by linguistic
variables, but by imprecise operators instead (in Example 5c a
“Fuzzy Less” operator would be used to represent the
imprecise phrase “THE MORE ... is less than ...”). This is
meaningful, since in real world problems (such as in Example
5) not the measured value is imprecise (in fact it is possible to
measure the water temperature with almost any desired
accuracy), but the rule (how to act on a given temperature).

The basic approach of the Calculus of Imprecise Knowledge
is that rules are a kind of encapsulated. If single rules have to
be changed (e.g. due to extended knowledge or experience)
this can be done by changing the rules’ anchor-points and/or
rules’ operators. If one had to change fuzzy sets of linguistic
variable(s), this would have side effects on other rules, using
the same linguistic variables.

One might wonder whether the original rule’s wording was
“The more the water is cold ...” (Example 5a) and it is not
obvious that “The more the water is less than 40°C ...”
(Example 5c) is the correct representation, especially since a
precise value (40°C) is used within an imprecise rule. In fact
this is already the calibration to the underlying context of the
rule to be represented. Such context depending specifications
are always necessary. In fuzzy control one uses linguistic
variables in which the membership functions have to be
defined, i.e. one has to set up the membership functions
“very_cold”, “cold” etc. From this it is always necessary to
define exact temperatures. Even if type-n fuzzy sets are used
exact values have to be specified, because the fuzzy sets on the
nth level have to be defined on a base of real numbers.
Typically it is much easier to specify just one single value
(namely the anchor-point, see above) instead of several (i.e.
for each fuzzy-set of the corresponding linguistic variable).

Another well known method, which also avoids
defuzzification, is the Takagi-Sugeno inference. Takagi-
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Sugeno requires some analytic knowledge about the problem
to be handled, which is a drawback if such is not available. In
cases as Example 5, where the knowledge can easily be put
down into words but definitions of adequate formulas are not
directly apparent, the Calculus of Imprecise Knowledge
respectively SFC is a good candidate for a fast and easy
realization.

6.2. Comparison operators
Comparison operators (also denominated as relation

operators or predicates) compare two terms.

Definition 10. An imprecise comparison operator ⊗cp

compares two real values x,y∈ℜ:
⊗cp(x,y) :  ℜ × ℜ → [0,1]  ,

which may be also denoted by
x ⊗cp y  .

The result of an imprecise comparison is a continuous truth-
value r which lies in the unit interval [0,1] and indicates the
degree of  truth of the imprecise comparison, where 0 indicates
that the result of the comparison is "totally not true" and 1
indicates that the result of the comparison is "totally true".
Values in between 0 and 1 indicate partial truth.

When phrasing knowledge, linguistic terms like "equal",
"less" or "greater" are often used. But as already discussed a
(mathematical) precision is typically not intended. As another
example, if someone is asked to tell from which age on people
are considered old, he might state an explicit age, e.g. 65
years. But actually he is not thinking, that all human beings up
to an age of 64.999 years are not old, and starting with the 65th

birthday they are old. Instead, the typical intention is that
people older than about 65 years are old. Or more specific: the
more someone is older than 65 years, the more he is
considered to be old. Even for imprecise statements it is very
often easy to state a specific anchor-point (65 years in the
example) as psycho-linguistic examinations have shown [28].

Imprecise comparison operators provide the possibility to
deal with precise values and model an imprecise process of
drawing conclusions (e.g. "the more someone is older than 65
years, the more ..."). Imprecise comparison operators are fuzzy
sets after all, defined by their membership function.

Since the operators shall be imprecise (i.e. non
dichotomous), their shape should be smooth. To return to the
example: One does not perceive that from exactly 65 years on
a human is considered to be old. One does rather consider that
from about 55 years a human starts to be slightly old and that
at about 75 years the human is finally old. Getting old is a
continuos process which starts slowly instead of at exact
values. Reconsidering Example 5 it does in fact make sense to
not suddenly start to turn on the hot water, but very slowly.
This prevents oscillation and instability when used in closed
loop controls. Furthermore the solution space of multi-
dimensional rules are smooth without discontinuities.

Hence no triangular and trapezoidal membership functions
are to be used for the imprecise operators, but continuously
differentiable instead. We thus define the following imprecise
comparison operators by:

Definition 11.  For x, y ∈ ℜ, the imprecise comparison
operators

Fuzzy Equal FE(x,y) :  ℜ × ℜ → [0,1]
Fuzzy Not Equal FNE(x,y) :  ℜ × ℜ → [0,1]
Fuzzy Less FL(x,y) :  ℜ × ℜ → [0,1]
Fuzzy Greater FG(x,y) :  ℜ × ℜ → [0,1]

are defined by:

( )myxyxFE rxy ⋅−−=∆∆ )(tanh1),( 2
,

with ∆xy > 0,  0 < ∆r < 1.0,  m > 0
and ( ) xyrm ∆∆= artanh  ,

( )myxyxFNE rxy ⋅−=∆∆ )(tanh),( 2
,

with ∆xy > 0,  0 < ∆r < 1.0,  m > 0
and ( ) xyrm ∆∆= artanh  ,

( )
2

1)(tanh
),(,

+⋅−
=∆∆

mxy
yxFL rxy

with ∆xy > 0,  0 < ∆r < 0.5,  m > 0
and ( ) xyrm ∆∆⋅= 2artanh  ,

( )
2

1)(tanh
),(,

+⋅−
=∆∆

myx
yxFG rxy

with ∆xy > 0,  0 < ∆r < 0.5,  m > 0
and ( ) xyrm ∆∆⋅= 2artanh  .

According to Definition 10 and 11 comparisons are written as:

yx
FE

= x is fuzzy equal to y

yx
FNE

≠ x is fuzzy not equal to y

yx
FL

< x is fuzzy less than y

yx
FG

>  x is fuzzy greater than y

Fig. 1.  Result r of the imprecise comparison  10
FE

x =
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The parameters ∆xy and ∆r (respectively m, which is
calculated by ∆xy and ∆r) are used to model the "imprecision"
of the operators. Fig. 1 shows the setting of ∆xy and ∆r for FE
(corresponding setting for FNE), Fig. 2 for FL (corresponding
setting for FG).

Determining ∆xy and ∆r as real values from the source of
linguistic verbalized knowledge is quite often difficult, since
the knowledge is imprecise. For example, in "about 65 years"
the anchor point is given as a real number, but transferring the
term "about" into real values ∆xy and ∆r is sometimes
difficult. Following the idea of fuzzy sets we introduce a
linguistic slope descriptor to describe the imprecision of the
operators. During implementing and maintaining knowledge
bases we observed that it is suitable to define between 4 and 6
different "degrees" of imprecision, which led to the following
definition.

Definition 12.  The parameters ∆xy and ∆r of the operators FE
and FNE are calculated by the slope descriptor sd ∈
{very_imprecise, imprecise, ninp, precise, very_precise} by:

sd = very_imprecise ⇒ ∆xy = 0.49 ⋅ (xmax – xmin)
∆r   = 0.99

sd = imprecise ⇒ ∆xy = 0.37 ⋅ (xmax – xmin)
∆r   = 0.99

sd = ninp ⇒ ∆xy = 0.25 ⋅ (xmax – xmin)
∆r   = 0.99

sd = precise ⇒ ∆xy = 0.13 ⋅ (xmax – xmin)
∆r   = 0.99

sd = very_precise ⇒ ∆xy = 0.01 ⋅ (xmax – xmin)
∆r   = 0.99

where ninp is the abbreviation for ‘neither imprecise nor
precise’.

The parameters ∆xy and ∆r of the operators FL and FG are
calculated by the slope descriptor sd ∈ {very_imprecise,
imprecise, ninp, precise, very_precise} by:

sd = very_imprecise ⇒ ∆xy = 0.49 ⋅ (xmax – xmin)
∆r   = 0.49

sd = imprecise ⇒ ∆xy = 0.37 ⋅ (xmax – xmin)
∆r   = 0.49

sd = ninp ⇒ ∆xy = 0.25 ⋅ (xmax – xmin)
∆r   = 0.49

sd = precise ⇒ ∆xy = 0.13 ⋅ (xmax – xmin)
∆r   = 0.49

sd = very_precise ⇒ ∆xy = 0.01 ⋅ (xmax – xmin)
∆r   = 0.49

Here, xmax is the maximum value of the data under
inspection (e.g. 120 years in the example above) and xmin is the
minimum value (e.g. 0 years). Such a "rough" setting of the
imprecision of the comparison operator is good enough for a
great majority of problems (see Section 7 for an example).
However, sometimes ∆xy and ∆r have to be accurately
determined during the process of knowledge acquisition.

The comparison operators have the following important
properties:

Theorem 14.  FE and FNE fulfill:
1. The operators are mappings ℜ × ℜ → [0,1] .
2. The operators are commutative, i.e.

FE(x,y) = FE(y,x)  and  FNE(x,y) = FNE(y,x) .
3. The operators are reflexive in the sense

FE(x,x) = 1.0  and  FNE(x,x) = 0.0 .
4. The operators are symmetric in the sense

FE(x–a, x) = FE(x+a, x) and
FNE(x–a, x) = FNE(x+a, x) .

5. The operators are reciprocal symmetric in the
sense  FE(x,y) = 1 – FNE(x,y) .

6. The operators have a "Boolean" behavior for
|x-y| → ∞ :

,0),(lim ,||
=∆∆∞→−

yxFE rxyyx

1),(lim ,||
=∆∆∞→−

yxFNE rxyyx
 .

7. For fixed y and x ∈ ℜ:
FE(x, y) is strictly monotonic ä for x ≤ y
FE(x, y) is strictly monotonic æ for x ≥ y
FNE(x, y) is strictly monotonic æ for x ≤ y
FNE(x, y) is strictly monotonic ä for x ≥ y
For fixed x and y ∈ ℜ:
FE(x, y) is strictly monotonic ä for x ≤ y
FE(x, y) is strictly monotonic æ for x ≥ y
FNE(x, y) is strictly monotonic æ for x ≤ y
FNE(x, y) is strictly monotonic ä for x ≥ y

8. The operators are continuously differentiable
functions ℜ2 .

Proof:
Section 1. – 6. and 8. are already proven in [16].

Fig. 2.  Result r of the imprecise comparison  10
FL

x <
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Interested readers may download this book directly from the
internet (link given in the reference section).

7. Fixed y:
∀ x1 < x2 ≤ y  satisfy (with m > 0):

( ) ( )myxmyx ⋅−−<⋅−− )(tanh1)(tanh1 2
2

1
2

⇒ FE(x, y) is strictly monotonically inc.
( ) ( )myxmyx ⋅−>⋅− )(tanh)(tanh 2

2
1

2

⇒ FNE(x, y) is strictly monotonically dec.
∀ y ≤ x1 < x2  satisfy (with m > 0):

( ) ( )myxmyx ⋅−−>⋅−− )(tanh1)(tanh1 2
2

1
2

⇒ FE(x, y) is strictly monotonically dec.
( ) ( )myxmyx ⋅−<⋅− )(tanh)(tanh 2

2
1

2

⇒ FNE(x, y) is strictly monotonically inc.
Fixed x:
∀ y1 < y2 ≤ x  satisfy (with m > 0):

( ) ( )myxmyx ⋅−−<⋅−− )(tanh1)(tanh1 2
2

1
2

⇒ FE(x, y) is strictly monotonically dec.
( ) ( )myxmyx ⋅−>⋅− )(tanh)(tanh 2

2
1

2

⇒ FNE(x, y) is strictly monotonically inc.
∀ x ≤ y1 < y2  satisfy (with m > 0):

( ) ( )myxmyx ⋅−−>⋅−− )(tanh1)(tanh1 2
2

1
2

⇒ FE(x, y) is strictly monotonically inc.
( ) ( )myxmyx ⋅−<⋅− )(tanh)(tanh 2

2
1

2

⇒ FNE(x,y) is strictly monotonically dec. ¨

Theorem 15.  FL and FG fulfill:
1. The operators are mappings ℜ × ℜ → [0,1] .
2. The operators are not commutative, i.e.

FL(x,y) ≠ FL(y,x)  and  FG(x,y) ≠ FG(y,x)
instead, they are reciprocal commutative, i.e.
FL(x,y) = FG(y,x) .

3. The operators are reflexive in the sense
FL(x,x) = 0.5  and  FG(x,x) = 0.5 .

4. The operators are symmetric in the sense
FL(x–a, x) = 1 – FL(x+a, x) and
FG(x–a, x) = 1 – FG(x+a, x) .

5. The operators are symmetric in the sense
FL(x, y) = 1 – FL(y, x)  and
FG(x, y) = 1 – FG(y, x) .

6. The operators have a "Boolean" behavior for
|x-y| → ∞ :

,0),(lim ,)(
=∆∆+∞→−

yxFL rxyyx

1),(lim ,)(
=∆∆−∞→−

yxFL rxyyx
,

,1),(lim ,)(
=∆∆+∞→−

yxFG rxyyx

.0),(lim ,)(
=∆∆−∞→−

yxFG rxyyx

7. For fixed y and x ∈ ℜ:
FL(x, y) is strictly monotonic decreasing
FG(x, y) is strictly monotonic increasing
For fixed x and y ∈ ℜ:
FL(x, y) is strictly monotonic increasing
FG(x, y) is strictly monotonic decreasing

8. The operators are continuously differentiable

functions ℜ2 .

Proof:
Already proven in [16]. ¨

Property #1 of Theorem 14 and 15, respectively, is
important to prove that the operators are imprecise operators in
the sense of Definition 10. Property #2, #3 and #6 reflect basic
expectations which are derived from the behavior of Boolean
comparison operators. The symmetry Properties #4 and #5
probably reflect an intuitive expectation, but we want to point
out that in specific areas it might be necessary to have
unsymmetrical operators too! Property #7 and #8 are required
in order to receive continuous solution spaces without local
minima and maxima.

6.3. Combination operators
Humans quite often do not only use isolated conditions for

formulating specific problems, but typically combine several
conditions. Thus imprecise combination operators (also
denominated as extended conjunctors, see Definition 7) are
needed to combine single comparisons (set up with the
operators FE, FNE, FL and FG).

Definition 13.  An imprecise combination operator ⊗cb

combines two or more truth values w ∈ [0,1]:
⊗cb(w1, w2, ... wn) :  [0,1]n → [0,1]

which may be also denoted by
w1  ⊗cb  w2  ...  ⊗cb  wn  .

The result of an imprecise combination is again a
continuous truth value r which lies in the unit interval [0,1].

Many combination operators already exist in Fuzzy Set
Theory and other mathematical research work. Since the
approach of SFC is slightly different from other Fuzzy
methods we identified those of the already existing operators
which are suitable to be used in SFC. For aggregation
problems (see for example [9], [20], [23]) all existing
operators can be used (including t-norms and s-norms). For an
averaging combination it turned out, that some operators
which have been defined in Fuzzy Set Theory are not suitable
to work with truth-values w ∈ [0,1] as in scalar fuzzy control.
The Lambda-AND and Lambda-OR [28], which are a special
cases of the OWA operator [23], are applicable as shown in
[16].

Definition 14.  The Lambda operators
ANDλ : [0,1]n → [0,1]
ORλ : [0,1]n → [0,1]

are defined by:
( ) ( ) wwwww inin ⋅−+=

=
)1(min,,,AND

...121 λλλ K

( ) ( ) wwwwwR i
ni

n ⋅−+=
=

)1(max,,,O
...1

21 λλλ K

with λ ∈ [0,1]
and wi ∈ [0,1], i = 1 ... n  ,
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where w  denotes the mean value of all wi .

The degree of "imprecision" can be set by choosing
appropriate values for the parameter λ. Again, determining λ
as a precise value from the source of linguistic verbalized
knowledge might be difficult and is quite often not necessary,
so we introduce a linguistic slope descriptor for the
imprecision of the Lambda operators, too.

Definition 15.  The parameter λ of the operators ANDλ and
ORλ is calculated by the slope descriptor sd ∈
{very_imprecise, imprecise, ninp, precise, very_precise} by:

sd = very_imprecise ⇒ λ = 0.00
sd = imprecise ⇒ λ = 0.25
sd = ninp ⇒ λ = 0.50
sd = precise ⇒ λ = 0.75
sd = very_precise ⇒ λ = 1.00

Again, ninp is the abbreviation for ‘neither imprecise nor
precise’.

The Lambda operators have the following important
properties:

Theorem 16.  ANDλ and ORλ fulfill:
1. The operators are mappings [0,1]n → [0,1] .
2. The operators are commutative, i.e.

ANDλ(w1, w2, ... wn) = ANDλ(w2, w1, ... wn) = ...
ORλ(w1, w2, ... wn) = ORλ(w2, w1, ... wn) = ... .

3. The operators are idempotent, i.e.
ANDλ(w1, w1, ... w1) = w1 and
ORλ(w1, w1, ... w1) = w1

4. The operators are continuous functions in ℜn.

Proof:
Already proven in [16]. ¨

Property #1 proves that the operators are imprecise
operators in the sense of Definition 13. Property #2 is again
what we typically expect, where Property #3 is not necessarily
required but exists. Property #4 is again required in order to
receive continuous solution spaces.

Thus, the result r of any SFC term is always a truth value,
lying in the unit interval [0,1], since the result of imprecise
SFC comparisons are truth value, lying in the unit interval, and
any Lambda combination of truth values w ∈ [0,1] lies again
in the unit interval.

A typical linguistic verbalization of knowledge is a
statement as in

Example 6:
THE MORE data d1 is equal to antecedent a1,

AND
THE MORE data d2 is less than antecedent a2,

AND
...

THE more the data r should be increased .

Each single comparison might be formulated by any term
from "equal", "not equal", "greater" or "less", and the
combination might be formulated by any term from "and" or
"or". Since the knowledge is imprecise, it can be implemented
with SFC by

( )( ) ( )( ) K222111 adgadgr cpcbcp ⊗⋅⊗⊗⋅= (10)

where gi are weighting factors for each single comparison
statement (not stated in the linguistic verbalized knowledge in
Example 6). From this, one of the major task during
knowledge acquisition is to identify the antecedents, the
“degrees of imprecision” and the weighting factors.
Implementation is then basically a transformation of the
linguistic knowledge into SFC formulas.

6.4. SFC being a Calculus of Imprecise Knowledge
In this section we prove that scalar fuzzy control is a

Calculus of Imprecise Knowledge as defined in Section 2. First
of all the truth values of SFC follow from Definition 1.
Secondly, data used are real constants and real variables, thus
they satisfy the corresponding Definitions 2 and 3. We now
have to prove that the imprecise comparison operators FE,
FNE, FL and FG are extended predicates, i.e. they follow the
corresponding Definition 6 and satisfy axioms P1 thru P6. Last
but not least we have to prove that the imprecise combination
operators ANDλ and ORλ are extended conjunctors, i.e. they
follow the corresponding Definition 7 and satisfy axioms J2
thru J4.

Theorem 17.  The imprecise comparison operators FE, FNE,
FL and FG are extended predicates and satisfy the axioms P1
thru P6 of the Calculus of Imprecise Knowledge.

Proof:
1. All imprecise comparison operators are mappings

ℜ × ℜ → [0,1]
as proved in Theorem 14 and 15.

2. FE and FNE satisfy axiom P1 thru P6 as proved in
Theorem 14.
FL and FG satisfy axiom P1 thru P6 as proved in The-
orem 15. ¨

Theorem 18.  The imprecise combination operators ANDλ and
ORλ are extended conjunctors and satisfy the axioms J2 thru J4
of the Calculus of Imprecise Knowledge.

Proof:
1. ANDλ and ORλ are mappings

[0,1]n → [0,1]
as proved in Theorem 16.

2. ANDλ and ORλ satisfy axiom J2 and J4 as proved in
Theorem 16.
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3. ANDλ and ORλ satisfy axiom J3:
=),,( 1 nwwAND Kλ

=⋅−+⋅ www n )1(),,min( 1 λλ K

λANDnww ∆+),,min( 1 K
=),,( 1 nwwOR Kλ

=⋅−+⋅ www n )1(),,max( 1 λλ K

λORnww ∆−),,max( 1 K
Let  wmin = min(w1, ..., wn)
and  wmax = max(w1, ..., wn) .
3.1 ),,min()1()1( 1 nAND www K⋅−−⋅−=∆ λλλ

⇒ ),,( 1 nANDAND ww Kλλ ∆=∆  for given λ .

),,max()1()1( 1 nOR www K⋅−+⋅−−=∆ λλλ

⇒ ),,( 1 nOROR ww Kλλ ∆=∆  for given λ .

3.2 0),,( =⋅+−⋅−=∆ wwwwwwAND λλλ K
0),,( =⋅−+⋅+−=∆ wwwwwwOR λλλ K
00)1()()1( min =⋅−≥−⋅−=∆ λλλ wwAND

00)1()()1( max =⋅−≥−⋅−=∆ λλλ wwOR

maxmin www ≤≤ ⇒

minmaxminmax )1()1( wwwwAND −<⋅−−⋅−≤∆ λλλ

minmaxmaxmin )1()1( wwwwOR −<⋅−+⋅−−≤∆ λλλ

3.3 Let  wi ≠ min(w1, ... wn), i ∈ {1...n}
and  wi < wi + δ ≤ 1 ⇒

=∆ ),...,,,( 1 niAND www Kλ

   min)1()1( ww ⋅−−⋅− λλ
=+∆ ),...,,,( 1 niAND www δλ K

   min)1(')1( ww ⋅−−⋅− λλ
w  is the mean value of w1,...,wi,...,wn

'w  is the mean value of w1,...,wi+δ,...,wn

⇒  'ww <   and with  0 ≤ λ ≤ 1  ⇒
∆ANDλ(w1, ...wi, ...wn) < ∆ANDλ(w1, ...wi+δ, ...wn)

Let  wi ≠ max(w1, ... wn), i ∈ 1 ... n
and  0 ≤ wi – δ < wi ⇒

=∆ ),...,,,( 1 niOR www Kλ

   
max)1()1( ww ⋅−+⋅− λλ

=+∆ ),...,,,( 1 niOR www δλ K
   

max)1(')1( ww ⋅−+⋅− λλ

w  is the mean value of w1,...,wi,...,wn

'w  is the mean value of w1,...,wi–δ,...,wn

⇒  'ww >   and with  0 ≤ λ ≤ 1  ⇒
∆ORλ(w1, ...wi, ...wn) < ∆ORλ(w1, ...wi–δ, ...wn) ¨

Theorem 18 shows that the imprecise combination operators
ANDλ and ORλ are classes of extended conjunctors. The
parameter λ defines the “degree of averaging”, i.e. for each λ
the combination operators build up a specific extended
conjunctor.

Finally, the “De’ Morgan law for extended conjunctors” is
valid for ANDλ and ORλ, since ANDλ and ORλ satisfy the
requirement of the corresponding theorem:

Theorem 19.  ANDλ and ORλ satisfy
∆ANDλ(w1, ... , wn) = ∆ORλ(1–w1, ... , 1–wn)
∆ORλ(w1, ... , wn) = ∆ANDλ(1–w1, ... , 1–wn)

for ∀ w1, ... , wn ∈ [0,1].

Proof:
Let wmin = min(w1,... wn)
and wmax = max(w1,... wn)

n

w
w

n

i
i∑

== 1 and

w
n

w

n
n

n

w

n

w
w

n

i
i

n

i
i

n

i

n

i
i

−=−=
−

=
−

=−
∑∑∑∑

==== 1
11

1 1111

∆ANDλ(w1, ... wn) = (1-λ)⋅ w  – (1-λ)⋅min(w1, ... wn)
∆ORλ(w1, ... wn) = –(1-λ)⋅ w  + (1-λ)⋅max(w1, ... wn)

1. =−−∆ )1,1( 1 nOR ww Kλ

=−−⋅−+−⋅−− )1,1max()1(1)1( 1 nwww Kλλ
=−−⋅−+−⋅−− )1,1max()1()1()1( 1 nwww Kλλ

=−⋅−+−⋅−− )1()1()1()1( minww λλ
=⋅−−⋅− min)1()1( ww λλ

),( 1 nAND ww Kλ∆

2. =−−∆ )1,1( 1 nAND ww Kλ

=−−⋅−−−⋅− )1,1min()1(1)1( 1 nwww Kλλ
=−−⋅−−−⋅− )1,1min()1()1()1( 1 nwww Kλλ

=−⋅−−−⋅− )1()1()1()1( maxww λλ
=⋅−+⋅− max)1()1( ww λλ

),( 1 nOR ww Kλ∆ ¨

7. A SFC solution for the inverted pendulum problem
Scalar fuzzy control has already been used and investigated

in a few research and engineering projects. [15] shows first
results of our research work on expert systems for
programming implantable devices such as cardiac pacemakers
and implantable defibrillators. In [17] we discuss possibilities
to use SFC methods in the area of aggregation problems,
where the task is to gather confidence in given hypotheses.
Furthermore SFC was used to successfully stabilize and drive a
highly dynamic fuel cell [18].

In this section we demonstrate the usage of the Calculus of
Imprecise Knowledge and SFC on the simple and well known
problem of the inverted pendulum (see for example [3], [4],
[14], [19], [22]). By contrast to above mentioned applications
this problem is simple enough to be completely described in
this paper. A comparison of the SFC solution presented here
with other suggested models for the inverted pendulum would
exceed the scope of this paper.
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7.1. The inverted pendulum system
The task of the inverted pendulum problem is both to

stabilize the pendulum in an upright position and keep the cart
at the origin position or drive the cart always back to the origin
position, respectively.

The inverted pendulum system was simulated on a computer
by using Eqs. (11) and (12).

=+ )('')( txmm pc )(' txcµ−
)(tF+

))(cos()('' tetlem p−

))(sin()(' 2 tetlemp+

(11)

0))(sin()(cos()('')(''3/4 =−+ tegtetxtel (12)

Here, e is the pendulum angle, where e=0 corresponds to an
upright position, e>0 corresponds to pendulum deflections to
the right and e<0 corresponds to pendulum deflections to the
left. x is the cart position, with x=0 if the cart is located at the
origin position, x>0 if the cart is right from the origin and x<0
if the cart is left from the origin position. F is the force driving
the cart-pendulum system, thus stabilizing the pendulum in an
upright position and keeping the cart at the origin position. It
is the task of the implementation to calculate F to obtain a
stabilized system.

Table 1 lists all variables and gives the parameter setting
used for the simulation.

7.2. Knowledge base
For a human being it is quite simple to solve the inverted

pendulum problem, as an artist can easily demonstrate.
Nevertheless, asked for a mathematical description of the
solution path, the great majority of persons will reply that they
can not provide it. Instead, it is easy to acquire the linguistic
description of the knowledge used to solve the problem. A
possible acquisition result is shown in

Example 7:
Knowledge on the inverted pendulum problem

1) Stabilizing the pendulum:
Rule #1:The more the pole is deflected to the right

(positive pole angle) the greater should be the
driving force F (positive F) to prevent the
pendulum from falling completely to the right
side.
Similarly for pole deflections to the left.

Rule #2:Additionally to rule #1, the more the angular
velocity is positive and the pole angle is not
deflected much to the left, the more should F be
increased.
This will prevent a pole, which is not deflected
to the left and simultaneously rapidly deflecting
to the right, from falling completely to the right
side.
Similarly for negative angular velocities.

2) Keeping the cart at or driving the cart back to the origin
position:
Rule #3:Additionally, the more the cart is positioned to

the right (far away from the origin), the more F
should be slightly increased.
This will cause the pole to "fall" slightly to the
left, thus allowing the cart to accelerate slightly
to the left and thus maneuver it back to the
origin position.
Similarly for negative angular velocities.

Rule #4:Additionally, the more the pendulum is
stabilized and the more the cart velocity is
negative (cart moves to the left) and the more
the cart is near to the origin (or already left of
the origin), the more F should be decreased. This
will cause the pole to "fall back" to the right,
thus slowing down the whole system.
Similarly for positive cart velocities.

Before transforming the linguistic verbalized knowledge
into an SFC implementation, the expert has to refine the
knowledge to receive the specific antecedents as well as the
required degree of imprecision. For example for rule #1 the
question to the expert is, which pole angle is supposed to be
great already, thus needing quick countermeasures. Certainly,
a pole angle of e.g. 0.05 rad does not need an immediate
countermeasure. Experience shows that from about 0.35 rad
(approximately 20 degree) countermeasures could be started.
Countermeasures should be started moderately, thus the
imprecision of the comparison is ’ninp’.

Similarly, the refinement can be achieved for rules #2 – 4.
We thus receive the following SFC implementation, as shown
in formula (13). The lines of (13) correspond to the eight rules
of example 7 (first line implements the first sentence of rule
#1, second line implements the second sentence of rule #1,
etc.).

=F 





 +>⋅+ 35.0100

FG

ninp
e







 −<⋅− 35.0100

FL

ninp
e

Table 1
Inverted Pendulum Parameters

Parameter Symbol Value
Pendulum angle e   in rad
Pendulum angular velocity e&   in rad/s
Cart position x   in m
Cart velocity x&   in m/s
Force to drive the cart F   in N
Mass of cart mc 1.0 kg
Friction of cart cµ 0.2 m
Mass of pole mp 0.1 kg
Length of pole lp 1.0 m
Step size for the simulation ∆T 0.02 s



M. F. Mlynski, H.J. Zimmermann / Applied Soft Computing 8 (2008) 1050-1067 17

Fig. 3.  Response for e = 1 rad and x = 0 m Fig. 4.  Response for e = 0 rad and x = 10 m

Fig. 5.  Response for e = 1 rad and x = 10 m Fig. 6.  Response for e = 1 rad and x = 10 m for different
antecedents and slope descriptors

















 −>






 +>⋅+ 5.000.1100

FG

ninp

F

precise

FG

ninp
eANDe&




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
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
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

 +<






 −<⋅− 5.000.1100

FL

ninp

F

precise

FL

ninp
eANDe&







 +>⋅+ 325

FG

ninp
x (13)







 −>⋅− 325

FL

ninp
x















 +<






 −<






 <⋅− 351.0||100

FL

ninp

F

ninp

FL

ninp

F

ninp

FL

ninp
xANDxANDe &&















 +<






 −<






 <⋅+ 351.0||100

FL

ninp

F

ninp

FL

ninp

F

ninp

FL

ninp
xANDxANDe &&

As mentioned above we obtain one SFC rule per linguistic
rule keeping the rulebase small and simple.

Driving the pendulum cart system this rulebase is to be con-
tinuously used to determine the force F momentarily needed to
stabilize the system, i.e. F is continuously calculated by the
rulebase (13). The inputs are real values (e , e& , x , x& ) and the
output (F) is directly calculated, i.e. F = F(e , e& , x , x& ) in

accordance to Eq. (13). In other words: fuzzification, ag-
gregation and defuzzification in fuzzy control are replaced by
SFC rules in scalar fuzzy control.

For the simulation the system response for a given force F
was calculated by Eqs. (11) and (12). With a step size of ∆T =
0.02s, the force F as well as the system response was
recalculated every 20 ms.

Figs. 3, 4 and 5 show three step responses with different
initial conditions. The proposed SFC implementation
obviously leads to a system which is able to quickly stabilize
the inverted pendulum through a wide range of different initial
conditions, even for very big pendulum deflections as in Figs.
3 and 5.

To demonstrate the robustness of the solution, the
antecedents have been varied by ±10% from the values given
above and the slope descriptors have been varied in between
imprecise and ninp. Fig. 6 shows the result for all possible
combinations of varied antecedents and slope descriptors. All
possible knowledge implementations, set up by all
combinatorial arrangements, result in a clear stabilization of
the pendulum-cart system. Clearly, selecting antecedents
and/or slope descriptors far away from the refined values will
result in an oscillating or unstable system, since it does no
longer represent the expert knowledge.
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8. Conclusion
While it is difficult for humans to “translate” linguistic

statements into expressions on an absolute scale level, it is
quite easy for humans to “translate” them into comparative
statements. The Calculus of Imprecise Knowledge introduced
in this paper provides the possibility to represent such
comparative statements by means of the extended predicates
and conjunctors. From this, the Calculus of Imprecise
Knowledge may be understood as a kind of comparative logic,
too. It is suitable to easily represent and implement imprecise
statements and knowledge.

While the Calculus of Imprecise Knowledge gives an
axiomatic framework, scalar fuzzy control (SFC) is one
suggestion for an application oriented specialization. It is
suitable in all areas, where imprecise knowledge deals with
real valued data. The basics of SFC is that no linguistic
variables are to be defined. From this, data are not to be
fuzzified, aggregated and defuzzified again. Furthermore it is
thus not necessary to choose appropriate methods for the
fuzzification, aggregation and defuzzification processes. In
SFC the knowledge is implemented in terms of SFC rules
instead, which use imprecise comparison and combination
operators. These SFC rules are used to directly calculate the
output data on the basis of given input data.

Scalar fuzzy control has been used in a few research and
engineering projects. [15] shows first results of our research
work on expert systems for programming implantable devices
such as cardiac pacemakers and implantable defibrillators. In
[17] we discuss possibilities to use SFC methods in the area of
aggregation problems, where the task is to gather confidence
in given hypotheses. Furthermore SFC was used to success-
fully stabilize and drive a highly dynamic fuel cell [18].
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