

Efficient development of fuel cell simulation models

Alexander Hlawenka

Product Manager - FClib

Fuel Cell Seminar Phoenix Oktober 30th, 2008

Content

- What is model based design?
- Example Fuel cell vehicle
- Fuel Cell Systems Library FClib
- What's the message?

Development process

Model Based Design

- MBD we understand as
 - a development paradigm for control applications
 - guided by a process model
- MBD allows for ...
 - ... early testing of control applications against a realistic process behavior
 - ... process design optimizations before process implementation
 - ... shortens your commissioning time dramatically

The process: Fuel cell and drive train

The process model – top level view

The process model – developed using libraries

Process model: features

- Model contains multiple physical domains
 - thermodynamic components
 - reaction chemistry
 - mechanical components
 - electrical components
- Build using available library blocks for physical modeling
- Parameter can be adjusted to measurements
- System level modeling

The controller model - detail

Controller model: features

- PI-Controllers
- Feed forward controls
- State machines
- Signal supervision (alarm generation)
- Remanent data storage
- etc.

Development process

- Model-in-the-loop
- Hardware-in-the-loop

Model-in-the-loop

- Classic approach:
 - replay static inputs to the controller
 - no reaction to controller outputs
- Closing control loops enables realistic testing
 - interaction between process model and controller
 - testing behavior at complex process failures
 - save testing environment

Hardware-in-the-loop

- e. g. Testing the final embedded hardware against a process model
- final I/O and communication

Hardware-in-the-Loop

Simulation Results – detail of a US06 cycle

What's the message?

- Design your controller using a process model! Do Model Based Design.
- Use Hardware-in-the-loop testing to verify your controller
- Use available libraries for system modeling!