
Reprinted from T heMathWorksNews&Notes | June 2007 | www.mathworks.com

PEM-FCs present complex control chal-
lenges. The gas mixture entering the fuel
cell must meet strict requirements at all
times, and the load dynamics must not af-
fect or destabilize the operation of the stack.
Faulty operating conditions can destroy
the stack. The gas generation and clean-up
units and their heat integration constitute
major parts of the fuel cell system, adding
complexity to the control design problem.

At EUtech Scientific Engineering, we
had to build a fuel cell control system be-
fore the fuel cell plant was available, which
meant that we could not test the control-
ler in the actual plant under real operating
conditions. We overcame this problem by
using Model-Based Design and rapid pro-
totyping: We used a Simulink® model of the
fuel cell to design the controller. Simulation
and automatic code generation enabled us
to perform intricate test sequences quickly,
repeatedly, and economically.

Modeling the Fuel
Cell System
Working in Simulink, we built the fuel cell
system using thermodynamic models from
FClib, our fuel cell components library.

FClib is fully compatible with Simulink
and xPC Target, and thus readily supports
hardware-in-the-loop (HIL) simulations.

The fuel cell system contains dozens of
components. To facilitate development, we
divided it into eight functional subsystems:

• Burner
• Process media supply
• Steam reformation
• Gas clean-up
• Fuel cell stack
• Electrical system and converter
• Cooling cycle
• Properties
Because we would be using the fuel cell

model for evaluation and optimization,
we took into account the principles of
physical conservation, and included ex-
tensive thermodynamic balancing func-
tionality. Mass and energy balances at the
component and system level are gener-
ated automatically with a step time short
enough to capture the plant dynamics.

Designing the Controller
The fuel cell system exhibits strong non-
linear and discontinuous behavior. The
sequence control of the start-up proce-

Develops a Fuel Cell System Controller
EUtech Scientific Engineering

Proton Exchange Mem-
brane Fuel Cell Systems

A PEM-FC system recombines hydrogen
and oxygen at the cathode (1), simul-
taneously inducing an electric current
and generating heat. The anode, the
negative post of the fuel cell (2), conducts
the electrons to an external circuit. At the
cathode (the positive post), oxygen is dis-
tributed to the surface of the catalyst (3).

The cathode conducts the electrons from
the external circuit to the catalyst, where
they recombine with the hydrogen ions
and oxygen to form water. The electro-
lyte is the proton exchange membrane
(4), a specially treated material that con-
ducts positively charged ions and blocks
electrons. Usually, several fuel cells are
combined to form a fuel cell stack.

1

2

3

4

To comply with the Kyoto Protocol, energy companies are

seeking more efficient power generation strategies. One

approach is to combine electricity and heat generation in

household micro-cogeneration plants using proton exchange

membrane fuel cells (PEM-FCs).

Image courtesy of MTU CFC Solutions.

T heMathWorksNews&Notes

By Francesco Turoni,
Abas Sadatsakak, Michael Mlynski,
Alexander Hlawenka, and
Michael Schreiber, EUTech

Reprinted from T heMathWorksNews&Notes | June 2007 | www.mathworks.com

dure runs through several states in which
air, steam, and then gas flow through the
system. This results in abrupt and discon-
tinuous property changes and requires
state-dependent resetting of control
parameters. Furthermore, the chemical
reactions taking place in the gas generator
and the gas clean-up, which are nonlinear
in nature, must be taken into account.

Given the complexity of the fuel cell
system, we decided to develop the con-
troller in stages, focusing on the indi-
vidual subsystems and then merging
them using a Simulink library of essen-
tial control elements. The control system
included four functional groups:

• State machine
• Closed-loop controls
• Open-loop controls
• Alarms
The fuel cell stack subsystem and the gas

generator operate in many different states.

The operating state is determined by the
nature of the working fluid (either gas or
steam), by load conditions, and by the op-
erating mode (such as normal, start-up,
shutdown, and emergency). We modeled
the control system’s supervisory logic using
a state machine developed in Stateflow®.

The various control loops are tightly cou-
pled, but the effects of their interdependence
can be reduced by clearly defined state logic.
To ensure smooth transitions, we adjusted
the control parameters for each state. In
most cases we found that a well-tuned PI
controller with anti wind-up was sufficient
to ensure smooth behavior.

Since the fuel cell stack exhibits a pro-
nounced nonlinear behavior, classical PID
controllers would not work for the fuel cell.

The Kyoto Protocol
The Kyoto Protocol is an amendment
to the international treaty on climate
change, assigning mandatory targets
for the reduction of greenhouse gas
emissions to signatory nations. Coun-
tries that ratify this protocol commit
to reduce their emissions of carbon
dioxide and other greenhouse gases,
or engage in emissions trading.

Figure 1. The structure of
the controller in a model
test setup.

Therefore we implemented a MIMO scalar
fuzzy controller, relaxing the practical tun-
ing requirements. We used state-dependent
mappings created in Stateflow to establish
the set points (desired states) of the actua-
tors (Figure 1).

Reprinted from T heMathWorksNews&Notes | June 2007 | www.mathworks.com

Designing the Alarm
Subsystem
The alarms not only handle the various
emergency conditions; they also ensure
that the prototype fuel cell system operates
within safe limits under all circumstances.
Cost, as well as safety, is an important de-
sign consideration: some components are
unique and therefore expensive and time-
consuming to replace.

To facilitate alarm management, we
implemented an alarm-handling system
that lets the operator enable, disable, and
parameterize the alarm functions online.
The application checks all available hard-
ware and software signals and generates
an alarm definition table in which the
alarm conditions are defined. This power-
ful functionality is especially helpful when
new and complicated systems are tested in
the field under severe time restrictions.

Generating
Embedded Code
After thoroughly testing the fuel cell pro-
cess model and its control system, we
generated the embedded software using
Real-Time Workshop® and Stateflow®
Coder. To do this we separated the con-
trol system model from the process model
along the I/O interfaces. Separation was

easy because data conversion
blocks transform the signal val-
ues of the CAN Bus to physical
values, and vice versa.

We compiled and deployed the
automatically generated C code
using xPC Target, a real-time oper-
ating environment. The extended
control functionality required pow-
erful target hardware. We selected
the PC-compatible xPC TargetBox®. Com-
munication between the control system and
process (plant model) was via CAN-Bus,
minimizing cabling efforts.

Hardware-in-the-Loop
Testing
After building and installing the execut-
able program on the embedded system,
we were ready to begin testing the con-
trol software. The real process was not yet
available, however, and the risk of dam-
aging the expensive prototype hardware
with untested software was too high.

The most realistic approach was HIL
(Figure 2). For this approach to work, the
process model would have to be accurate
enough to allow us to test the embedded soft-
ware under all relevant modes of operation.

We set up the real-time process simu-
lation using a regular industrial PC. Our

HIL simulations traversed the control
system’s entire operational envelope under
normal as well as extreme conditions.
We executed test scripts automatically in
batch runs, saving hours of development
time. Code reviews and tests showed that
the generated code was efficient.

Our simulation results mapped closely
to measured results. Figure 3 shows how
well the temperature of the gas genera-
tion unit is controlled under extreme
load variations. 7

Figure 2. In the HIL
setup, control of
the fuel cell system
(plant) is separated
from control of the
test rig.

Figure 3. Temperature control simulation results.

Test rig
Control (PC)

Application
software

Config.
database

Interface Interface Interface Interface

Test rig
(PC)

Plant
(PC)

Plant Control
(xPC TargetBox)

Safety chain

Electrical load

DC /AC inverter

Media supply

Plant simulation

FClib

State machine

Controls

Alarm generator

Remanent data
storage

CAN CAN CAN

Ethernet

Signal
storage

For More Information

■ ��EUtech
www.eutech-scientific.de

■ ��Control Design
www.mathworks.com/res/control_design

Resources

visit
www.mathworks.com

TECHNICAL SUPPORT
www.mathworks.com/support

ONLINE USER COMMUNITY
www.mathworks.com/matlabcentral

DEMOS
www.mathworks.com/products/demos

TRAINING SERVICES
www.mathworks.com/training

Third-Party PRODUCTS
www.mathworks.com/connections

�Worldwide Contacts
www.mathworks.com/contact

�E-mail
info@mathworks.com

Resources

visit
www.mathworks.com

TECHNICAL SUPPORT
www.mathworks.com/support

ONLINE USER COMMUNITY
www.mathworks.com/matlabcentral

DEMOS
www.mathworks.com/products/demos

TRAINING SERVICES
www.mathworks.com/training

Third-Party PRODUCTS
www.mathworks.com/connections

�Worldwide Contacts
www.mathworks.com/contact

�E-mail
info@mathworks.com

©1994-2007 by The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, Real-
Time Workshop, SimBiology, SimHydraulics, and xPC
TargetBox are registered trademarks and SimEvents is
a trademark of The MathWorks, Inc. Other product or
brand names are trademarks or registered trademarks
of their respective holders.

Reprinted from T heMathWorksNews&Notes | June 2007 | www.mathworks.com

©1994-2007 by The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, Real-
Time Workshop, SimBiology, SimHydraulics, and xPC
TargetBox are registered trademarks and SimEvents is
a trademark of The MathWorks, Inc. Other product or
brand names are trademarks or registered trademarks
of their respective holders.

91480V00 05/07

