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PEM-FCs present complex control chal-
lenges. The gas mixture entering the fuel 
cell must meet strict requirements at all 
times, and the load dynamics must not af-
fect or destabilize the operation of the stack. 
Faulty operating conditions can destroy 
the stack. The gas generation and clean-up 
units and their heat integration constitute 
major parts of the fuel cell system, adding 
complexity to the control design problem. 

At EUtech Scientific Engineering, we 
had to build a fuel cell control system be-
fore the fuel cell plant was available, which 
meant that we could not test the control-
ler in the actual plant under real operating 
conditions. We overcame this problem by 
using Model-Based Design and rapid pro-
totyping: We used a Simulink® model of the 
fuel cell to design the controller. Simulation 
and automatic code generation enabled us 
to perform intricate test sequences quickly, 
repeatedly, and economically.

Modeling the Fuel  
Cell System
Working in Simulink, we built the fuel cell 
system using thermodynamic models from 
FClib, our fuel cell components library. 

FClib is fully compatible with Simulink 
and xPC Target, and thus readily supports 
hardware-in-the-loop (HIL) simulations.

The fuel cell system contains dozens of 
components. To facilitate development, we 
divided it into eight functional subsystems:

• Burner
• Process media supply
• Steam reformation
• Gas clean-up
• Fuel cell stack
• Electrical system and converter
• Cooling cycle
• Properties
Because we would be using the fuel cell 

model for evaluation and optimization, 
we took into account the principles of 
physical conservation, and included ex-
tensive thermodynamic balancing func-
tionality. Mass and energy balances at the 
component and system level are gener-
ated automatically with a step time short 
enough to capture the plant dynamics.

Designing the Controller
The fuel cell system exhibits strong non-
linear and discontinuous behavior. The 
sequence control of the start-up proce-
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Proton Exchange Mem-
brane Fuel Cell Systems 

A PEM-FC system recombines hydrogen 
and oxygen at the cathode (1), simul-
taneously inducing an electric current 
and generating heat. The anode, the 
negative post of the fuel cell (2), conducts 
the electrons to an external circuit. At the 
cathode (the positive post), oxygen is dis-
tributed to the surface of the catalyst (3). 

The cathode conducts the electrons from 
the external circuit to the catalyst, where 
they recombine with the hydrogen ions 
and oxygen to form water. The electro-
lyte is the proton exchange membrane 
(4), a specially treated material that con-
ducts positively charged ions and blocks 
electrons. Usually, several fuel cells are 
combined to form a fuel cell stack.
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To comply with the Kyoto Protocol, energy companies are 

seeking more efficient power generation strategies. One 

approach is to combine electricity and heat generation in 

household micro-cogeneration plants using proton exchange 

membrane fuel cells (PEM-FCs).  

Image courtesy of MTU CFC Solutions. 
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dure runs through several states in which 
air, steam, and then gas flow through the 
system. This results in abrupt and discon-
tinuous property changes and requires 
state-dependent resetting of control  
parameters. Furthermore, the chemical 
reactions taking place in the gas generator 
and the gas clean-up, which are nonlinear 
in nature, must be taken into account. 

Given the complexity of the fuel cell 
system, we decided to develop the con-
troller in stages, focusing on the indi-
vidual subsystems and then merging 
them using a Simulink library of essen-
tial control elements. The control system 
included four functional groups:

• State machine
• Closed-loop controls
• Open-loop controls
• Alarms
The fuel cell stack subsystem and the gas 

generator operate in many different states. 

The operating state is determined by the 
nature of the working fluid (either gas or 
steam), by load conditions, and by the op-
erating mode (such as normal, start-up, 
shutdown, and emergency). We modeled 
the control system’s supervisory logic using 
a state machine developed in Stateflow®.

The various control loops are tightly cou-
pled, but the effects of their interdependence 
can be reduced by clearly defined state logic. 
To ensure smooth transitions, we adjusted 
the control parameters for each state. In 
most cases we found that a well-tuned PI 
controller with anti wind-up was sufficient 
to ensure smooth behavior. 

Since the fuel cell stack exhibits a pro-
nounced nonlinear behavior, classical PID 
controllers would not work for the fuel cell. 

The Kyoto Protocol
The Kyoto Protocol is an amendment 
to the international treaty on climate 
change, assigning mandatory targets 
for the reduction of greenhouse gas 
emissions to signatory nations. Coun-
tries that ratify this protocol commit 
to reduce their emissions of carbon 
dioxide and other greenhouse gases, 
or engage in emissions trading.

Figure 1. The structure of 
the controller in a model 
test setup. 

Therefore we implemented a MIMO scalar 
fuzzy controller, relaxing the practical tun-
ing requirements. We used state-dependent 
mappings created in Stateflow to establish 
the set points (desired states) of the actua-
tors (Figure 1). 
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Designing the Alarm  
Subsystem
The alarms not only handle the various 
emergency conditions; they also ensure 
that the prototype fuel cell system operates 
within safe limits under all circumstances. 
Cost, as well as safety, is an important de-
sign consideration: some components are 
unique and therefore expensive and time-
consuming to replace. 

To facilitate alarm management, we 
implemented an alarm-handling system 
that lets the operator enable, disable, and 
parameterize the alarm functions online. 
The application checks all available hard-
ware and software signals and generates 
an alarm definition table in which the 
alarm conditions are defined. This power-
ful functionality is especially helpful when 
new and complicated systems are tested in 
the field under severe time restrictions.

Generating  
Embedded Code
After thoroughly testing the fuel cell pro-
cess model and its control system, we  
generated the embedded software using 
Real-Time Workshop® and Stateflow® 
Coder. To do this we separated the con-
trol system model from the process model 
along the I/O interfaces. Separation was 

easy because data conversion 
blocks transform the signal val-
ues of the CAN Bus to physical 
values, and vice versa. 

We compiled and deployed the 
automatically generated C code  
using xPC Target, a real-time oper-
ating environment. The extended 
control functionality required pow-
erful target hardware. We selected 
the PC-compatible xPC TargetBox®. Com-
munication between the control system and 
process (plant model) was via CAN-Bus, 
minimizing cabling efforts. 

Hardware-in-the-Loop 
Testing
After building and installing the execut-
able program on the embedded system, 
we were ready to begin testing the con-
trol software. The real process was not yet 
available, however, and the risk of dam-
aging the expensive prototype hardware 
with untested software was too high. 

The most realistic approach was HIL  
(Figure 2). For this approach to work, the  
process model would have to be accurate 
enough to allow us to test the embedded soft-
ware under all relevant modes of operation. 

We set up the real-time process simu-
lation using a regular industrial PC. Our 

HIL simulations traversed the control 
system’s entire operational envelope under 
normal as well as extreme conditions. 
We executed test scripts automatically in 
batch runs, saving hours of development 
time. Code reviews and tests showed that 
the generated code was efficient.

Our simulation results mapped closely 
to measured results. Figure 3 shows how 
well the temperature of the gas genera-
tion unit is controlled under extreme 
load variations. 7

 

Figure 2. In the HIL 
setup, control of 
the fuel cell system 
(plant) is separated 
from control of the 
test rig. 

Figure 3. Temperature control simulation results. 
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